NATURE-BASED SOLUTIONS TO ADDRESS CLIMATE CHANGE

Beahrs ELP 2021

Kairos Dela Cruz - Natalia A Rossi - Mor Seye Fall - Mekalia Paulos - Julika Tribukait

CLIMATE CHANGE AND OUR NEW NORMAL

Climate change is happening, but it is happening **at a faster rate**, and it is here to stay...

The Intergovernmental Panel on Climate Change (IPCC) 6th Assessment Report (AR6) UNEQUIVOCALLY linked human activities to global warming.

IPCC's AR6 warned of tipping points for breakaway climate change.

The world is "trying" to **mobilize resources** to address climate change, but they are **woefully inadequate**.

Only \$80 billion of the \$100 billion commitment has been mobilized by developed countries. Time is running-out.

Solutions have to address multiple challenges and should not (at the very least) make problems even worse.

WHAT IS NbS?

"...actions to protect, sustainably manage, and restore natural or modified ecosystems, that address societal challenges effectively and adaptively, simultaneously providing human well-being and biodiversity benefits."

- International Union for Conservation of Nature (IUCN)

vs. nature-derived solutions

vs. nature-inspired solutions

WHAT IS NbS AND WHY WILL IT WORK?

NbS tackles multiple challenges

- Seven societal challenges: climate change mitigation and adaptation, disaster risk reduction, economic and social development, human health, food security, water security, environmental degradation and biodiversity loss
- Co-benefits are central to NbS

- NbS is cheaper and sustainable
 - Estimates show that NbS is 2x-5x cheaper than hard infrastructure projects

• NbS puts people and environment at the center of design and implementation

• NbS is replicable and scalable

GUIDING QUESTIONS FOR CASE STUDIES

Societal challenge = climate change Individual questions:

- What's the **scale**?
- What NbS can be applied?
- What are the **biodiversity benefits**?
- What are other **co-benefits**?
- What are potential negative impacts?
- How does the NbS interact with the broader
 land- or seascape (now and in the future)?
- Who is affected by the NbS?
- o Is the NbS investible/bankable?
- How is the cost-effectiveness (long-term vs. short-term) of the NbS, compared to engineered or other solutions?
- How **sustainable** is the NbS?

- Societal challenge: climate-change-driven coastal flooding and loss of livelihoods
- "NbS equation": NbS {Climate mitigation benefits + Climate adaptation benefits + Co-benefits - (Negative consequences / unintended feedbacks)}
- Mitigation benefits: organic carbon storage
- Adaptation benefits: Flood protection and erosion control
- Bundle of co-benefits: Flood protection benefits, coastal protection, buffer shorelines, biodiversity, and fisheries enhancement
- **Potential negative consequences:** maladaptation, unsustainable
- Most relevant at national and regional scales: especially important in countries with extensive coastlines (SIDS)

NbS to reduce climate risks and build social-ecological resilience in southern Cuba

NbS to reduce climate risks and build social-ecological resilience in southern Cuba

The Zapata Peninsula

- \circ ~5000 Km²
- ~9000 people
- Over 450 kilometers of coastline (+ keys)
- 75 % of the total annual production of spiny lobster countrywide
 - Nature-tourism hotspot

Community-based mangrove restoration & innovation

A solution to mitigate coastal erosion

- An optimal roots density to mitigate waves and currents action.
- A biomimetic structure of mangrove root trees
- A pile of units allowing to reach the desired water column occupancy

A solution supporting ecosystem services

- **Reefs supporting shellfish** farming
 - Reefs creating habitats and nursery areas for commercially important fish and shellfish species

Module complexification with simple, lightweight and potentially versatile add-ons

A functional solution on an ecological level

- A suitable rugosity for the colonization by the biodiversity Creation of a substrate, of

1000

- habitats and nursery areas for numerous species
- Inexpensive, affordable and locally produced materials (wood, bamboo, concrete)
- Management and exploitation of the infrastructure by local communities

NbS to reduce climate risks and build social-ecological resilience in southern Cuba

AFRICA

Home to a rich and diverse animal, plant, and marine biodiversity

Rapidly degraded natural resources due to high deforestation, increased human/livestock population, poor agricultural practices, and other unsustainable land use practices

Desert

Semi-desert Grassland

Rain forest

Bushlands and Thickets Other woodlands

Forest transitions & other forest

Miombo woodlands

Climate change -> loss of 50%+ African bird and mammal species; 20%-30% decline in lake productivity; significant loss of plant species

Is a leader in restoring degraded ecosystems - 25+ nations have pledged to restore 100 million ha of degraded landscapes

ETHIOPIA

Recognizing extent of land/forest degradation,
Ethiopia made strong voluntary commitment in context of 'Bonn Challenge' to implement forest landscape restoration of 15 million ha

Ambitiously plans to plant 20 billion seedlings [2019-2024]; of which 5 billion seedlings have been planted in 2020 alone

UNECA in collaboration with MoWIE developed a community-led NbS programme

NbS FOR WATER / ENERGY INFRASTRUCTURE AND COMMUNITY RESILIENCE IN ETHIOPIA

Aims to build resilience of infrastructure, communities and ecosystems in the surrounding catchment areas of selected hydropower dams – integrated natural resource management intervention

Contributes to Ethiopia's low-emission, climate resilient infrastructure and development plans by deploying appropriate forms of green interventions

Pilot implemented in three hotspot areas of Nile Sub-Basins (Mugar, Guder and Jemma watersheds)

SPECIFIC OBJECTIVES of the NbS INTERVENTION

✓ Increase carbon sequestration by managing 10,000 ha of indigenous and exotic tree species

(Green Legacy Initiative)

✓ Rehabilitate up to 10,000 ha of degraded lands through construction of soil and water conservation structures

- ✓ Build resilience of infrastructure, ecosystems and local communities:
- reducing siltation;
- improving 10,000 households' livelihoods (energy saving cook stoves, fruit trees, fodder trees, beehives)

 Enhance capacity of local government/communities (esp. youth and women) via training/capacity development interventions

 ✓ Reduce carbon footprint of ECA/UN operations in Ethiopia by 50% via carbon-offsetting scheme.

EXPECTED OUTCOMES

- Reduced vulnerability
- Degraded lands in the selected watershed reforested/ afforested
- Enhanced hydro-infrastructure resilience
 - Long-term rehabilitation structures to reduce siltation maintained
- Ecosystem sustainability and services enhanced
- Greenhouse gases sequestration boosted
 - Improved monitoring and verification of greenhouse gas through inventories and capacity development
- Existing natural forests/ shrubs managed
- Soil and water conservation structures on degraded areas constructed
- Improved livelihoods through diversification (eg. fuel saving cookstoves)
- Employment and entrepreneurial opportunities created for local communities, esp. targeting youth and women
- Watershed management and market linkage community formed and capacitated
- Human and institutional capacity enhanced

LESSONS LEARNT

Early multi-stakeholder involvement to create ownership (**whole-ofsociety** approach)

Building awareness for buy-in

NbS costs < other interventions [Estimate: \$54 billion vs. \$228 billion]

Linking project with livelihood and economic diversification objectives by creating job opportunities.

Enhancing financial sustainability for long-term success [ecosystem services payment]

Inclusive training and capacitation of surrounding communities

Carbon markets, including international voluntary markets

	Mangrove restoration in Cuba	Energy infrastructure and community resilience in Ethiopia
Societal challenge / Scale	Climate-change driven coastal flooding and loss of livelihoods / Zapata Peninsula	Climate change exacerbating already degraded lands / 3 key hydro-facility catchment areas across the country
CC Adaptation / Mitigation benefits	Flood protection, erosion control, livelihoods / blue carbon storage	Soil erosion control, reforestation, livelihoods / carbon storage
Biodiversity benefits / Bundle of co-benefits	Increase quality and quantity of habitat for biodiversity (mangroves) / Fisheries, recreation, coastal protection	Increase quality and quantity of habitat for biodiversity
Primary NbS beneficiaries / community engagement	Coastal communities, country (NDCs) / high community engagement	Local communities, country (NDCs) / high community engagement
Investible/bankable potential of NbS	Low (due to limited access to international markets)	High
Cost-effectiveness compared to engineered or other solutions	Several levels of magnitude more cost effective than building and maintaining extensive sea wall or similar	Considered more cost effective than non NbS solution
Potential negative impacts of the NbS	Low participation, uneven benefit distribution, post project management	Low participation, uneven benefit distribution, post project management

CONCLUSIONS & RECOMMENDATIONS

- ✓ NbS can be an effective tool to address climate change while delivering multiple co-benefits.
- ✓ NbS does **not equal conservation**.
- ✓ NbS is **not perfect**.
- ✓ NbS is **just one of the tools** in the toolbox.

The two case studies show NbS potential and advantages, but no "one size fits all" solution.

✓ <u>To apply NbS</u>:

- ✓ Start with and don't lose focus on the **societal challenge**.
- ✓ Be aware of root causes.
- ✓ Define the level and boundaries of your intervention.
- ✓ Apply a holistic **land- or seascape** approach.
- ✓ Ensure equal and continuous engagement of all stakeholders from the very start.
- ✓ Be clear about trade-offs and limitations.
- Ensure sustainability of the intervention (inter alia through secured funding and stakeholder buy-in).
- ✓ Take future climate change impacts into account.

THANK YOU!

